Урок физики превращение энергии при гармонических колебаниях. Конспект превращение энергии при колебательном движении (проблемное обучение).docx план-конспект урока по физике на тему. Превращение энергии при гармонических колебаниях

Урок физики превращение энергии при гармонических колебаниях. Конспект превращение энергии при колебательном движении (проблемное обучение).docx план-конспект урока по физике на тему. Превращение энергии при гармонических колебаниях

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m — максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.

При колебаниях математического маятника полная энергия системы складывается из кинетической энергии материальной точки (шарика) и потенциальной энергии материальной точки в поле сил тяготения. При колебаниях пружинного маятника полная энергия складывается из кинетической энергии шарика и потенциальной энергии упругой деформации пружины:

При прохождении положения равновесия и в первом и во втором маятнике кинетическая энергия шарика достигает максимального значения, потенциальная энергия системы равна нулю. При колебаниях происходит периодическое превращение кинетической энергии в потенциальную энергию системы, полная энергия системы при этом остается неизменной, если отсутствуют силы сопротивления (закон сохранения механической энергии). Например, для пружинного маятника можно записать:

В колебательном контуре (рис.14.1.с) полная энергия системы складывается из энергии заряженного конденсатора (энергии электрического поля )и энергии катушки с током (энергии магнитного поля . Когда заряд конденсатора максимален, ток в катушке равен нулю (см. формулы 14.11 и 14.12), энергия электрического поля конденсатора максимальна, энергия магнитного поля катушки равна нулю. В момент времени, когда заряд конденсатора равен нулю, ток в катушке максимален, энергия электрического поля конденсатора равна нулю, энергия магнитного поля катушки максимальна. Также как и в механических осцилляторах, в колебательном контуре происходит периодическое превращение энергии электрического поля в энергию магнитного поля, полная энергия системы при этом остается неизменной, если отсутствует активное сопротивление R . Можно записать:

. (14.15)

Если в процессе колебаний на математический или на пружинный маятник действуют внешние силы сопротивления, а в цепи колебательного контура есть активное сопротивление R , энергия колебаний, а значит, и амплитуда колебаний будут уменьшаться. Такие колебания называются затухающими колебаниями , на рисунке 14.2 приведен график зависимости колеблющейся величины Х от времени.

Рис. 14.3

§ 16. Переменный электрический ток.

С источниками постоянного тока мы уже знакомы, знаем, для чего они нужны, знаем законы постоянного тока. Но гораздо большее практическое значение в нашей жизни имеет переменный электрический ток, который используется в быту, на производстве и других областях человеческой деятельности. Сила тока и напряжение переменного тока (например, в осветительной сети нашей квартиры) меняются со временем по гармоническому закону. Частота промышленного переменного тока – 50Гц. Источники переменного тока разнообразны по своему устройству и характеристикам. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока. На рис.14.3 рамка вращается вокруг вертикальной оси ОО , перпендикулярной силовым линиям магнитного поля, с постоянной угловой скоростью . Угол α между вектором и нормалью меняется по закону , магнитный поток через поверхность S , ограниченную рамкой, меняется со временем, в рамке возникает ЭДС индукции.

Рассмотрим на примере колебаний груза на пружине, какие превращения энергии происходят в колебательной системе. Сначала рассмотрим случай, когда в системе нет трения. Первоначальное положение системы показано на следующем рисунке (а).

Выведем систему из положения равновесия, оттянем шарик вправо на расстояние Хm. На рисунке выше положение (б). При этом мы сообщим системе некоторую потенциальную энергию.

Формула потенциальной энергии

Потенциальная энергия будет вычисляться по следующей формуле:

Wп = (k*(Xm)^2)/2.

Вся энергия системы будет равняться потенциальной энергии.

После этого мы отпустим тело. Шарик начнет движение влево. Деформация пружины будет уменьшаться. При этом будет становиться меньше и потенциальная энергия. Но из закона сохранения энергии мы знаем, что она не может исчезать бесследно, она должна переходить в какой-то другой вид энергии.

Заметно, что после того как мы отпустили шарик, его скорость начала увеличиваться, а следовательно, будет возрастать и кинетическая энергия. В момент, когда шарик будет проходить положение равновесия, его скорость будет максимальной, а, следовательно, кинетическая энергия тоже будет максимальной. При этом, так как деформация пружины равняется нулю, то потенциальной энергии вообще не будет.

После того как шарик пройдет положение равновесия, его скорость снова начнет уменьшаться. А значит, будет уменьшаться и кинетическая энергия его движения. Так как в системе снова появится деформация пружины, она будет растягиваться, то начнет увеличиваться потенциальная энергия.

Дойдя до крайнего левого положения (в), потенциальная энергия достигнет своего максимального значения. А скорость груза в этой точке станет равной нулю. То есть кинетическая энергия будет равняться нулю.

Превращение энергии при гармонических колебаниях

Мы видим, что полная энергия системы в любой момент времени есть сумма потенциальной энергии системы и кинетической энергии системы.

W = Wк+Wп = (m*V^2)/2 +(k*x^2)/2.

Такие же превращения энергии будут происходить и в математическом маятнике. Как мы видим, полная механическая энергия замкнутой системы будет сохраняться постоянной. Хотя при этом значения кинетической и потенциальной энергии могут меняться, но в сумме они всегда будут давать одинаковое число.

Полная механическая энергия системы равняется потенциальной энергии тела в начальной момент, либо кинетической энергии тела, при прохождении им положения равновесия.

W = (m*V^2)/2 = (k*x^2)/2.

Если в системе будет присутствовать трение, то часть энергии будет теряться на преодоление сил трения. При этом с течение времени амплитуда колебаний будет уменьшаться, пока тело совсем не остановится. Данные колебания будут затухающими.

Колебания – это любые процессы или движения, повторяющиеся через равные промежутки времени.

Свободные колебания возникают в системе под действием ее внутренних сил после выведения из положения равновесия.

Условия возникновения свободных колебаний :

1 . После выведения системы из положения равновесия должна возникнуть сила, стремящаяся вернуть ее в положение равновесия;

2 . Трение и сопротивление в системе должно быть достаточно мало.

Гармонические колебания – это периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса.

Затухающие колебания – это колебания, происходящие при учете сил трения и сопротивления в системе.

Амплитуда колебания (А) - это модуль наибольшего смещения тела от положения равновесия.

Период колебания (Т) - это время одного полного колебания. Единица измерения – [c].

T = t /N , где t – время, N – число колебаний.

Частота колебаний (ν) – это число колебаний в единицу времени.

Единица измерения – [Гц].

Циклическая (круговая) частота (ω 0) – это число колебаний за 2π секунд. Единицы измерения - [рад/c]. ω 0 = 2π ν = 2π/Т.

Уравнение гармонических колебаний x = A sin (ω 0 t + φ 0), x = A cos (ω 0 t + φ 0),

φ - начальная фаза (единицы измерения- [рад]).

Примеры гармонических колебаний служат колебания математического и пружинного маятников.

Математический маятник – это материальная точка, подвешенная на длинной невесомой нерастяжимой нити. Схема сил, действующих на математический маятник, показана на рисунке.

F = F т + F упр

Для математического маятника циклическая частота

колебаний ω 0 = √g/l

период колебаний Т = 2π√l/g,

где l – длина нити,

g – ускорение свободного падения.

Пружинный маятник – это тело массой m, колеблющегося на пружине с коэффициентом жесткости k. Для пружинного маятника

циклическая частота колебаний ω 0 = √k / m ,

период колебаний Т = 2π√m / k.

При последовательном соединении пружин, общий коэффициент жесткости

к общ = (k 1 ∙ k 2) /(k 1 + k 2).

При параллельном соединении пружин, общий коэффициент жесткости k общ = k 1 + k 2 .

Закон сохранения энергии при гармонических колебаниях:

Е max пот = Е пот + Е кин = Е max кин;

где Е max пот - максимальная потенциальная энергия,

Е пот - потенциальная энергия,

Е кин – кинетическая энергия,

Е max кин - максимальная кинетическая энергия.

Вынужденные колебания – это колебания, происходящие под действием внешней, периодически действующей силы. Для вынужденных колебаний характерно явление резонанса.

Резонанс – это резкое возрастание амплитуды

вынужденных колебаний при совпадении

частоты действия внешней силы с частотой

собственных колебаний системы.

Увеличение амплитуды вынужденных

колебаний при резонансе выражено тем

отчетливее, чем меньше трение в системе.

Кривая 2 на рисунке соответствует

большему трению в системе,

кривая 1 – меньшему трению. Рис. 14.12

Автоколебаниями называются колебания, являющиеся незатухающими из-за наличия нутри системы источника энергии. Системы, в котором существуют автоколебания, называются автоколебательными системами. При этом подача энергии к колебательной системе регулируется самой системой с помощью регулятора по каналу обратной связи.

Механические колебания распространяются в упругих средах. Если какая – либо частица среды начинает колебаться, то из-за взаимодействия между частицами среды колебания начинают распространяться во все стороны, следовательно возникает волна.

Волна – это колебания, распространяющиеся в пространстве с течением времени.

Волна называется продольной , если колебания частиц происходит вдоль направления распространения волны. Продольные волны могут распространятся в твердой, жидкой и газообразной среде.

Волна называется поперечной , если колебания частиц происходят перпендикулярно направлению распространению волны. Поперечные волны могут распространяться только в твердой среде.

Длина волны (λ) – это расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах. За один период волна распространяется в пространстве на расстояние, равное длине волны.

Рассмотрим процесс превращения энергии при гармоническом колебательном движении на примере идеального (F тр =0) горизонтального пружинного маятника. Выводя тело из положения равновесия, например сжимая пружину на х=А, мы сообщаем ему некоторый запас потенциальной энергии \(~W_{n_{0}} = \frac{kA^2}{2}\) (горизонтальный уровень, на котором находится маятник, выбираем за нулевой уровень отсчета потенциальной энергии маятника в поле силы тяжести, тогда W п = 0). При движении тела к положению равновесия его потенциальная энергия \(W_n = \frac{kx^2}{2}\) убывает, а кинетическая \(W_k = \frac{m \upsilon^2}{2}\) возрастает, так как деформация пружины уменьшается, а скорость движения тела увеличивается. В момент прохождения телом положения равновесия его потенциальная энергия равна нулю, а кинетическая \(W_{k_{0}}=\frac{m \upsilon^2_max}{2}\) - максимальна. После прохождения положения равновесия скорость тела уменьшается, а пружина растягивается. Следовательно, кинетическая энергия тела убывает, а потенциальная - возрастает. В точке максимального отклонения тела его кинетическая энергия равна нулю, а потенциальная - максимальна. Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно. Полная механическая энергия пружинного маятника равна сумме его кинетической и потенциальной энергий \(W = W_k + W_n.\)

Если смещение материальной точки, совершающей гармонические колебания, изменяется с течением времени по закону \(~x = A \cos \omega t,\) то проекция скорости на ось х \(~\upsilon_x = -\omega A \sin \omega t\) (см. § 13.2). Следовательно, кинетическая энергия в любой момент времени может быть задана функцией \(W_k = \frac{m \upsilon^2}{2} = \frac{m \omega^2 A^2 \sin^2 \omega t}{2} = \frac{m \omega^2 A^2}{4}(1- \cos 2 \omega t),\) а потенциальная энергия - функцией \(W_n = \frac{k x^2}{2} = \frac{ k A^2 \cos^2 \omega t}{2} = \frac{m \omega^2 A^2}{4}(1+ \cos 2 \omega t) ,\) так как \(\omega^2 = \frac{k}{m}\), то \(~k = m \omega^2.\)

Полная энергия \(W = \frac{m \omega^2 A^2 \sin^2 \omega t}{2} + \frac{m \omega^2 A^2 \cos^2 \omega t}{2} = \frac{m \omega^2 A^2}{2} = \frac{kA^2}{2}.\)

Из этих формул видно, что W к и W п изменяются тоже по гармоническому закону, с одинаковой амплитудой \(\frac{m \omega^2 A^2}{4}\) и в противофазе друг с другом и с частотой \(~2 \omega\) (рис. 13.13), а полная механическая энергия не изменяется со временем. Она равна либо потенциальной энергии тела в момент максимального отклонения, либо его кинетической энергии в момент прохождения положения равновесия:

\(W = \frac{kA^2}{2} = \frac{m \upsilon^2_m}{2} = \frac{m \omega^2 A^2}{2}.\)

В реальных условиях на маятник всегда действуют силы сопротивления, поэтому полная энергия уменьшается, и свободные колебания маятника с течением времени затухают, т.е. их амплитуда уменьшается до нуля (рис. 13.14).




Самое обсуждаемое
Бежевый джемпер покроя кимоно Правый рукав с передом и спинкой Бежевый джемпер покроя кимоно Правый рукав с передом и спинкой
Прически Кэти Перри: что она придумала на этот раз? Прически Кэти Перри: что она придумала на этот раз?
Что делать, если ребёнок капризничает Ребенок очень капризничает Что делать, если ребёнок капризничает Ребенок очень капризничает


top