Энергия электростатического поля объемная плотность энергии. Энергия электрического поля. Объёмная плотность энергии поля. Электрическая энергия заряженных проводников

Энергия электростатического поля объемная плотность энергии. Энергия электрического поля. Объёмная плотность энергии поля. Электрическая энергия заряженных проводников

Лекция 8. Энергия электрического поля

Понятие энергии электрического поля неразрывно связано с понятиями её накопления и расходования. Отсюда следует, что должны быть рассмотрены и накопители этой энергии – электрические конденсаторы. Существенно при этом понимание школьниками, насколько большая энергия может быть сосредоточена в сравнительно небольшом объёме современного конденсатора. Особую значимость имеют эксперименты, показывающие, в каких процессах эта энергия может быть использована для практических нужд.

Изучение электрической ёмкости и конденсаторов позволяет сопоставить примитивные, но принципиально важные методы электростатики с возможностями современных электроизмерительных приборов. К ним, в частности, относятся широко распространённые в быту цифровые мультиметры, позволяющие измерять ёмкости от единиц пикофарад. Поэтому можно сначала оценивать ёмкость и диэлектрическую проницаемостьметодами электростатики, а затем более точно измерять эти величины с помощью мультиметра.

Интересной методической проблемой является обоснование целесообразности введения понятия электроёмкости уединённого проводника и разработка оптимальной методики формирования этого понятия.

Сформировать понятие энергии электрического поля в полном объёме на уроках физики вряд ли удастся. Поэтому в классах профильного обучения необходимы внеурочные исследования учащихся.

8.1. Электроёмкость уединённого проводника

Выполняя исследования, учащиеся, конечно, заметили, что проводники могут накапливать и сохранять электрические заряды. Это свойство проводников характеризуется электрической ёмкостью. Выясним, как зависит потенциал уединённого проводника от его заряда. Потенциал можно измерять относительно бесконечно удалённой точки. На практике удобнее измерять потенциалы заряженных тел относительно земли.

На стержень электрометра наденем полый проводящий шар, и корпус электрометра соединим с заземлением. Электрометр будем использовать в качестве электростатического вольт-метра, измеряющего потенциал шара относительно земли или, что то же самое, разность потенциалов между шаром и землёй.

Пробным шариком, прикоснувшись к кондуктору источника электричества, перенесём внутрь шара некоторый заряд q . Стрелка электростатического вольтметра отклонится, показывая определённый потенциал . Повторим опыт, сообщая полому шару заряды 2q , 3q ... Обнаруживаем, что стрелка вольтметра отклоняется, показывая значения 2, 3...

Таким образом, отношение заряда Q проводящего тела к его потенциалу остаётся постоянным и характеризует электроёмкость проводника:

Заменим полый шар электрометра другим, например, меньшего размера, и повторим опыт. Наблюдаем, что при сообщении ему тех же зарядов q , 2q , 3q , ... вольтметр показывает значения, растущие пропорционально заряду, но бльшие, чем в предыдущей серии опытов. Значит, ёмкость C = Q / этого шара меньше.

В системе СИ электрическая ёмкость выражается в фарадах : 1 Ф = 1 Кл/1 В.

8.2. Электроёмкость сферического проводника

Пусть в среде с диэлектрической проницаемостью находится сферический проводник радиусом R . Если потенциал в бесконечности считать равным нулю, то потенциал заряженной сферы

Тогда электрическая ёмкость сферы радиусом R есть Таким образом, ёмкость уединённого проводящего шара пропорциональна его радиусу.

Простые опыты показывают, что тела, несущие электрический заряд, можно считать уединёнными в том случае, если окружающие тела не вызывают значительного перераспределения заряда на них.

8.3. Конденсатор

Изготовим конденсатор из двух одинаковых проводящих пластин, расположенных параллельно, и соединим его с электрометром, выполняющим функцию вольтметра. На стержень электрометра насадим полую проводящую сферу. Зарядим одну из пластин пробным шариком, перенеся им заряд q с наэлектризованной эбонитовой палочки или иного источника электричества. При этом вольтметр покажет некоторое напряжение U между пластинами.

Будем переносить внутрь полой сферы, а значит, и на пластину конденсатора равные заряды. При этом увидим, что показания вольтметра увеличиваются на равные значения. Значит, система двух проводящих пластин обладает ёмкостью

и может выполнять функцию конденсатора – накопителя электрического заряда. Подчеркнём, что здесь q – заряд одной из пластин конденсатора.

8.4. Ёмкость плоского конденсатора

Вычислим теоретически электрическую ёмкость плоского конденсатора. Напряжён ность поля, создаваемого одной из его пластин где – поверхностная плотность заряда на пластине. Согласно принципу суперпозиции напряжённость электрического поля между пластинами конденсатора в два раза больше (см. исследование 5.7):

Так как поле однородное, то разность потенциалов между пластинами, расположенными на расстоянии d друг от друга, равна Отсюда ёмкость плоского конденсатора есть :

Подтвердим теорию экспериментом. Для этого соберём плоский конденсатор, зарядим его и соединим пластины с электростатическим вольтметром. Оставив заряд конденсатора неизменным, будем менять остальные его параметры, наблюдая за вольтметром, показания которого обратно пропорциональны ёмкости конденсатора:

Увеличение расстояния d между пластинами конденсатора ведёт к пропорциональному увеличению напряжения между ними, значит, ёмкость конденсатора С ~ 1/d . Смещая пластины друг относительно друга так, чтобы они оставались параллельными, будем увеличивать площадь перекрытия пластин S . При этом в той же степени уменьшается напряжение между ними, т.е. растёт ёмкость конденсатора: С ~ S . Заполним промежуток между пластинами диэлектриком с диэлектрической проницаемостью и увидим, что показания вольтметра уменьшатся в раз, т.е. С ~ .

Так как заряд системы оставался неизменным, то можно сделать вывод, что ёмкость конденсатора прямо пропорциональна площади перекрытия пластин, обратно пропорциональна расстоянию между ними и зависит от свойств среды, т.е. С ~ S /d , что и подтверждает формулу (8.2). Значение электрической постоянной 0 получаем, измерив в опытах U , q , d , S , и вычислив ёмкость один раз по формуле (8.1), а другой – по формуле (8.2).

8.5. Параллельное соединение конденсаторов

При параллельном соединении двух конденсаторов ёмкостями С 1 и С 2 напряжения на них одинаковы и равны U , а заряды q 1 и q 2 различны. Понятно, что общий заряд батареи равен сумме зарядов конденсаторов q = q 1 + q 2 , а её ёмкость:

(8.3)

8.6. Последовательное соединение конденсаторов

К батарее из двух последовательно соединённых конденсаторов подключим электростатический вольтметр с полой сферой. Сообщим соединённой с вольтметром обкладке первого конденсатора заряд +q . По индукции вторая обкладка этого конденсатора приобретёт заряд –q , а соединённая с ней проводником обкладка второго конденсатора – заряд +q . В результате оба конденсатора будут нести одинаковый заряд q . При этом напряжения на конденсаторах различны. Понятно, что сумма напряжений на каждом из конденсаторов равна общему напряжению батареи:

Но U = q /С , U 1 = q /С 1 , U 2 = q /С 2 , поэтому ёмкость батареи определяется формулой

8.7. Энергия плоского конденсатора

Сообщим одной из пластин плоского конденсатора заряд q такой величины, чтобы разность потенциалов между пластинами стала равна U . Если расстояние между пластинами d , то напряжённость электрического поля в конденсаторе Е = U /d .

Одна из пластин конденсатора с зарядом q находится в созданном второй пластиной однородном электрическом поле напряжённостью Е /2, поэтому на неё действует сила притяжения ко второй пластине f = qE /2. Потенциальная энергия заряда q в этом поле равна работе, которую совершает электрическое поле при сближении пластин конденсатора вплотную:

Подставляя в это равенство значение Ed = U и пользуясь формулой (8.1), получаем, что энергия электрического поля между пластинами конденсатора:

(8.5)

8.8. Энергия произвольного конденсатора

Полученная формула справедлива не только для плоского, но и вообще для любого конденсатора. Действительно, напряжение на конденсаторе данной ёмкости прямо пропорционально его заряду U = q/C. Если заряд изменился на малую величину q , то электрическое поле совершило работу А = U q . Полная работа поля, очевидно, равна площади под графиком:

Ситуация не изменится, если вместо конденсатора использовать уединённый проводник. Его потенциал (относительно бесконечности) равен = q/С , поэтому энергия электрического поля

8.9. Экспериментальное определение энергии, запасённой конденсатором

Энергию конденсатора будем измерять по тепловому действию. В пробирке расположим тонкую металлическую спираль. Пробирку закроем пробкой с капиллярной трубкой, внутри которой находится капля воды. Мы получили газовый термометр – прибор, в котором смещение капли в трубке пропорционально количеству теплоты, выделившемуся в пробирке. К спирали через разрядный промежуток из двух металлических шариков подключим конденсатор, параллельно которому подсоединим электрометр с полым шаром. Для заряда конденсатора будем использовать любой источник электричества и металлический шарик на изолирующей ручке.

Зарядим конденсатор до некоторого напряжения и, сблизив шарики, разрядим его через спираль. При этом капля в трубке переместится на определённое расстояние. Так как разряд происходит быстро, то процесс нагревания воздуха в пробирке можно считать адиабатическим, т.е. происходящим без теплообмена с окружающей средой.

Подождём, пока воздух в пробирке охладится, а капля вернётся в исходное положение. Увеличим напряжение в два, а затем в три раза. После разрядов капля переместится на расстояние, соответственно в четыре и девять раз превышающее первоначальное. Заменим конденсатор на другой, ёмкость которого в два раза больше, и зарядим его до исходного напряжения. Тогда при разряде капля переместится в два раза дальше.

Таким образом, опыт подтверждает справедливость формулы (8.5) W = СU 2 /2, согласно которой энергия, запасённая в конденсаторе, пропорциональна его ёмкости и квадрату напряжения.

8.10. Плотность энергии электрического поля

Выразим энергию электрического поля между обкладками конденсатора такой формулой, чтобы в ней не было величин, характеризующих сам конденсатор, и остались бы только величины, характеризующие поле. Понятно, что этого можно достичь только одним способом: вычислить энергию поля, приходящуюся на единицу объёма. Так как напряжение на конденсаторе U = Ed , а его ёмкость то подстановка этих выражений в формулу (8.5) даёт:

Величина Sd представляет собой объём V электрического поля в конденсаторе. Поэтому плотность энергии электрического поля пропорциональна квадрату его напряжённости.

Исследование 8.1. Измерение ёмкости плоского конденсатора с помощью мультиметра

Информация. В последние годы стали доступны цифровые мультиметры самых различных типов. Эти приборы в принципе позволяют измерять напряжение, силу тока, сопротивление, температуру, ёмкость, индуктивность, определять параметры транзисторов. Перечень измеряемых мультиметром величин определяется типом мультиметра. Нас сейчас интересуют мультиметры, допускающие измерение ёмкости; к ним относятся, например, приборы типов М890G и DТ9208А. Для определённости в дальнейшем мы будем иметь в виду последний прибор.

Проблема. Как экспериментально подтвердить справедливость теоретически полученной формулы для ёмкости конденсатора?

Задание. Разработайте демонстрационный эксперимент, позволяющий на уроке подтвердить справедливость формулы (8.2) для ёмкости плоского конденсатора с воздушным диэлектриком.

Вариант выполнения.

Соберите плоский конденсатор из круглых пластин, входящих в комплект приборов по электростатике, и подключите к нему мультиметр. Линейкой измерьте диаметр пластин и расстояние между ними. По формуле (8.2) вычислите ёмкость конденсатора и сравните получившееся значение с измеренным. В демонстрационном опыте могут получиться, например, следующие результаты: диаметр пластин конденсатора D = 0,23 м, расстояние между пластинами d = 0,01 м, вычисленная по формуле ёмкость: мультиметр показывает такое же значение.

Изменяйте расстояние между пластинами, площадь перекрытия пластин конденсатора и вводите между ними различные диэлектрики. При этом соответствующим образом изменяются измеренные мультиметром значения ёмкости конденсатора. Вместе с учащимися проанализируйте результаты опыта и сделайте вывод относительно справедливости формулы (8.2).

Исследование 8.2. Определение диэлектрической проницаемости методом измерения ёмкости

Задание. Используя цифровой мультиметр, определите диэлектрические проницаемости различных веществ.

Вариант выполнения. Соберите плоский конденсатор с воздушным диэлектриком, измерьте расстояние d между обкладками и ёмкость С 0 конденсатора. Измерьте толщину l плоскопараллельной пластины диэлектрика, аккуратно введите диэлектрик между обкладками и мультиметром измерьте ёмкость С . По формуле вычислите диэлектрическую проницаемость вещества. Подскажите учащимся, как выводится эта формула. Измерьте диэлектрические проницаемости стекла, оргстекла, винипласта, текстолита, полиэтилена и т.д. Сравните получившиеся значения с табличными.

Исследование 8.3. Параллельное и последовательное соединения конденсаторов

Задание. Используя цифровой мультиметр, подтвердите справедливость формул (8.3) и (8.4) для ёмкости параллельно и последовательно соединённых конденсаторов.

Вариант выполнения .

Подберите радиотехнические конденсаторы ёмкостью от десятков пикофарад до десятков нанофарад и с помощью мультиметра определите их ёмкости. Обратите внимание на то, что измеренные значения, как правило, не совпадают с обозначенными на корпусах конденсаторов. Это объясняется тем, что допустимая погрешность ёмкости радиотехнических конденсаторов достигает 20%. Конденсаторы соедините параллельно, измерьте результирующую ёмкость и убедитесь, что она равна сумме ёмкостей каждого из конденсаторов. Затем соедините конденсаторы последовательно и убедитесь, что величина, обратная результирующей ёмкости, равна сумме величин, обратных ёмкостям соединённых конденсаторов.

Учащимся можно предложить количественные задачи по вычислению ёмкости различных батарей конденсаторов с последующей проверкой решения в реальном эксперименте.

Исследование 8.4. Работа электрического поля

Задание . При поднесении заряженного тела к лежащим на поверхности лёгким шарикам они начинают подпрыгивать. Используя это явление, экспериментально покажите, что работа электрического поля по перемещению заряда пропорциональна разности потенциалов, которую прошёл этот заряд: А = qU.

Вариант выполнения .

Возле дна пластиковой бутылки горизонтально закрепите неподвижный плоский электрод, а над ним параллельно – подвижный электрод. К стенке бутылки приклейте шкалу с миллиметровыми делениями. Между электродами поместите пенопластовый шарик, обёрнутый тонкой алюминиевой фольгой. Электроды подключите к высоковольтному источнику. При подаче напряжения на электроды шарик начнёт подпрыгивать. Увеличивая напряжение, добейтесь того, чтобы шарик подпрыгивал на высоту h , равную расстоянию d между электродами. В этом случае работа электрического поля по перемещению заряженного шарика А = qU = mgh . Увеличьте напряжение в два раза и убедитесь, что высота h также возрастёт в два раза. Сделайте вывод из опыта.

Заметьте, что разность потенциалов выражается через напряжённость электрического поля формулой U = Ed . Так как, по условиям опыта, h = d , то на оторвавшийся от нижнего электрода шарик со стороны электрического поля действует постоянная по модулю сила F = Eq = mg .

Исследование 8.5. Электростатический двигатель

Задание. Используйте явление электрического ветра (см. исследование 7.7) для построения действующей модели электростатического двигателя.

Вариант выполнения. Первым изготовил электростатический двигатель один из основоположников учения об электричестве, выдающийся американский учёный Б.Франклин. Так называемое колесо Франклина имеется в любом кабинете физики (фото вверху).

Дома школьники могут изготовить простейшую модель такого двигателя, если на один из электродов пьезоэлектрического источника наденут вырезанную из алюминиевой фольги фигуру в форме сегнерова колеса (фото внизу). Периодически нажимая на рычаг источника, они смогут привести получившееся колесо Франклина в непрерывное вращение.

На фотографии гораздо более мощный электростатический двигатель, который способен вращать даже крыльчатку вентилятора. Прибор собран на пластиковой бутылке.

Исследование 8.6. Энергия заряженного конденсатора

Задание. Учащиеся надолго запомнят свойство конденсатора накапливать электрическую энергию, если прямо на их глазах собрать конденсатор и продемонстрировать его в работе. Предложите простой способ изготовления такого конденсатора, который способен поразить воображение школьников.

Вариант выполнения. Приготовьте две дюралевые пластины размером, например, 15 15 см. Из толстой полиэтиленовой плёнки вырежьте прямоугольник размером примерно 20 20 см и, проложив его между пластинами, соберите конденсатор. Включите высоковольтный источник, установите напряжение 10 кВ и, сблизив электроды источника, покажите проскакивающую между ними искру. Затем от того же источника при том же напряжении зарядите собранный на демонстрационном столе конденсатор. Разрядите конденсатор и покажите, что получается гораздо более мощная искра, чем при разряде между электродами источника. Обратите внимание на необходимость соблюдения правил техники безопасности при работе с конденсаторами.

Исследование 8.7. Батарея гальванических элементов

Проблема. Учащимся хорошо знакомы отдельные элементы и батареи гальванических элементов, которые широко используются в быту. Школьники знают, что эти приборы характеризуются напряжением и способны давать электрический ток. Однако напряжение указанных источников не превышает нескольких вольт, а в электростатике используются напряжения в тысячи и десятки тысяч вольт. Поэтому заряды на электродах гальванических источников практически никак себя не проявляют. Как экспериментально доказать, что на выводах батарей гальванических элементов действительно имеются электрические заряды, физическая природа которых такая же, как тех, которые обнаруживаются в опытах электростатики?

Задание. Поставьте эксперимент, позволяющий обнаружить заряды на выводах батареи гальванических элементов и определить их знак.

Вариант выполнения .

В комплект к электрометрам входит дисковый конденсатор, представляющий собой два металлических диска диаметром 100 мм, рабочие поверхности которых покрыты тонким слоем лака. Один из дисков имеет крепление для насадки на стержень электрометра, второй снабжён изолирующей ручкой.

Используя указанное оборудование и ориентируясь по фотографии, выполните задание.

Исследование 8.8. Оценка энергии заряженного конденсатора

Информация. Выполняя исследование 2.7, вы убедились, что энергию электрического поля можно оценить по вспышке лампы накаливания, происходящей при разряде создающих поле заряженных тел. Действительно, при разряде потенциальная энергия неподвижных зарядов переходит в кинетическую энергию движущихся зарядов, заряды нейтрализуются, и поле исчезает. Движение свободных зарядов по проводнику вызывает его нагревание.

Задание. Приготовьте две батарейки по 4,5 В, два электролитических конденсатора ёмкостью по 1000 мкФ, рассчитанных на рабочее напряжение не ниже 12 В, и четыре лампочки для карманного фонаря на напряжение 1 В. Докажите, что энергия заряженного конденсатора пропорциональна его ёмкости и квадрату напряжения.

Вопросы для самоконтроля

1. Какова методика введения и формирования понятия электрической ёмкости проводника и системы проводников?

2. Как в демонстрационном эксперименте можно обосновать справедливость формулы для ёмкости плоского конденсатора?

3. Насколько целесообразна демонстрация непосредственно на уроке сущности метода определения диэлектрической проницаемости вещества?

4. Предложите методику введения и формирования понятия плотности энергии электрического поля.

5. Разработайте серию исследовательских заданий учащимся по экспериментальному обоснованию построения электростатических двигателей.

6. Перечислите наиболее яркие опыты, демонстрирующие накопление электрической энергии конденсаторами.

7. Как доказать, что используемые в быту батареи гальванических элементов принципиально ничем не отличаются от электростатических источников электричества?

8. Какими экспериментами можно подтвердить, что энергия, запасённая в конденсаторе, пропорциональна его ёмкости и квадрату напряжения?

Литература

Бутиков Е.И. , Кондратьев А.С. Физика: Учеб. пособие: В 3 кн. Кн. 2. Электродинамика. Оптика. – М.: Физматлит, 2004.

Демонстрационный эксперимент по физике в старших классах средней школы. Т. 2. Электричество. Оптика. Физика атома: Под ред. А.А.Покровского. – М.: Просвещение, 1972.

Майер В.В. , Майер Р.В. Электричество. Учебные исследования: Библиотека учителя и школьника. – М.: ФМЛ, 2007.

Шилов В.Ф. О первоочередных мерах по материально-техническому обновлению кабинета физики. – Учебная физика, 2000, № 4.

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна. Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем

С учетом, что

RC-цепь - электрическая цепь, состоящая из конденсатора и резистора. Она бывает дифференцирующей и интегрирующей. Вот такое соединение резистора и конденсатора называется дифференцирующей цепью или укорачивающей цепью .

При подаче на вход RC-цепи импульса напряжения конденсатора сразу же начнет заряжаться током, проходящим через него самого и резистор. Сначала ток будет максимальным, затем по мере увеличения заряда конденсатора постепенно уменьшится до нуля по экспоненте. Когда через резистор проходит ток, на нем образуется падение напряжения, которое определяется, как U=i R , где i-ток заряда конденсатора. Поскольку ток изменяется экспоненциально, то и напряжение будет изменяться также - экспоненциально от максимума до нуля. Падение напряжения на резисторе, как раз таки и является выходным. Его величину можно определить по формуле U вых = U 0 e -t/τ . Величина τ называется постоянной времени цепи и соответствует изменению выходного напряжения на 63% от исходного (e -1 = 0.37). Очевидно, что время изменения выходного напряжения зависит от сопротивления резистора и емкости конденсатора и, соответственно, постоянная времени цепи пропорциональна этим значениям, т. е. τ = RC . Если емкость в Фарадах, сопротивление в Омах, то τ в секундах.

Если поменять местами резистор и конденсатор, то получим интегрирующую цепь или удлиняющую цепь .

Выходным напряжением в интегрирующей цепи является напряжение на конденсаторе. Естественно, если конденсатор разряжен, оно равно нулю. При подаче импульса напряжения на вход цепи конденсатор начнет накапливать заряд, и накопление будет происходить по экспоненциальному закону, соответственно, и напряжение на нем будет нарастать по экспоненте от нуля до своего максимального значения. Его значение можно определить по формуле U вых = U 0 (1 - e -t/τ) . Постоянная времени цепи определяется по такой же формуле, как и для дифференцирующей цепи и имеет тот же смысл.

Для обеих цепей резистор ограничивает ток заряда конденсатора, поэтому чем больше его сопротивление, тем больше время заряда конденсатора. Также и для конденсатора, чем больше емкость, тем большее время он заряжается.

Электрический ток: виды

Постоянный ток

Постоянным током называется электрический ток, который не изменяется во времени по направлению. Источниками постоянного тока являются гальванические элементы, аккумуляторы и генераторы постоянного тока.

Переменный ток

Переменным называется электрический ток, величина и направление которого изменяются во времени. Область применения переменного тока намного шире, чем постоянного. Это объясняется тем, что напряжение переменного тока можно легко понижать или повышать с помощью трансформатора, практически в любых пределах. Переменный ток легче транспортировать на большие расстояния.

Электрическую энергию плоского конденсатора можно выразить через напряженность поля между его обкладками:

где
- объем пространства, занятого полем, S – площадь обкладок, d – расстояние между ними. Оказывается, через напряженность можно выразить электрическую энергию и произвольной системы заряженных проводников и диэлектриков:

, (5)

,

а интегрирование проводится по всему пространству, занятому полем (предполагается, что диэлектрик изотропный и
). Величинаw представляет собой электрическую энергию, приходящуюся на единицу объема. Вид формулы (5) дает основания предположить, что электрическая энергия заключена не во взаимодействующих зарядах, а в их электрическом поле, заполняющем пространство. В рамках электростатики это предположение проверить экспериментально или обосновать теоретически невозможно, однако рассмотрение переменных электрических и магнитных полей позволяет удостоверится в правильности такой полевой интерпретации формулы (5).

7. Энергия электрического поля (Примеры решения задач) Энергия взаимодействия зарядов

Пример 1.

Определите электрическую энергию взаимодействия точечных зарядов, расположенных в вершинах квадрата со стороной a (см. рис.2).

Решение .

На рис.3 условно изображены двунаправленными стрелками все парные взаимодействия зарядов. Учитывая энергии всех этих взаимодействий, получим:

.

Пример 2.

Определите электрическую энергию взаимодействия заряженного кольца с диполем, расположенным на его оси, как показано на рис.4. Известны расстояния a , l , заряды Q , q и радиус кольца R .

Решение .

При решении задачи следует учесть все энергии парных взаимодействий зарядов одного тела (кольца) с зарядами другого тела (диполя). Энергия взаимодействия точечного заряда q с зарядомQ , распределенным по кольцу, определяется суммой

,

где
- заряд бесконечно малого фрагмента кольца, - расстояние от этого фрагмента до зарядаq . Поскольку всеодинаковы и равны
, то

Аналогично найдем энергию взаимодействия точечного заряда –q с заряженным кольцом:

Суммируя W 1 иW 2 , получим для энергии взаимодействия кольца с диполем:

.

Электрическая энергия заряженных проводников

Пример 3.

Определите работу электрических сил при уменьшении в 2 раза радиуса однородно заряженной сферы. Заряд сферы q , ее первоначальный радиус R .

Решение .

Электрическая энергия уединенного проводника определяется формулой
, гдеq – заряд проводника,- его потенциал. Учитывая, что потенциал однородно заряженной сферы радиусаR равен
, найдем ее электрическую энергию:

.

После уменьшения в два раза радиуса сферы ее энергия становится равной

.

Электрические силы при этом совершают работу

.

Пример 4.

Два металлических шара, радиусы которых r и 2r , а соответствующие заряды 2q и –q , расположены в вакууме на большом расстоянии друг от друга. Во сколько раз уменьшится электрическая энергия системы, если шары соединить тонкой проволокой?

Решение .

После соединения шаров тонкой проволокой их потенциалы становятся одинаковыми

,

а установившиеся заряды шаров Q 1 и Q 2 получаются в результате перетекания заряда с одного шара на другой. При этом суммарный заряд шаров остается постоянным:

.

Из этих уравнений найдем

,
.

Энергия шаров до соединения их проволокой равна

,

а после соединения

.

Подставляя в последнее выражение значения Q 1 и Q 2 , получим после простых преобразований

.

Пример 5.

В один шар слились N = 8 одинаковых шариков ртути, заряд каждого из которых q . Считая, что в начальном состоянии ртутные шарики находились на большом расстоянии друг от друга, определите, во сколько раз увеличилась электрическая энергия системы.

Решение .

При слиянии ртутных шариков сохраняется их суммарный заряд и объем:

,

где Q – заряд шара, R – его радиус, r – радиус каждого маленького ртутного шарика. Суммарная электрическая энергия N уединенных шариков равна

.

Электрическая энергия полученного в результате слияния шара

.

После алгебраических преобразований получим

= 4.

Пример 6.

Металлический шарик радиуса R = 1 мм и заряда q = 0,1 нКл с большого расстояния медленно приближают к незаряженному проводнику и останавливают, когда потенциал шарика становится равным  = 450 В. Какую работу для этого следует совершить?

Решение .

Электрическая энергия системы из двух заряженных проводников определяется формулой

,

где q 1 иq 2 – заряды проводников, 1 и 2 – их потенциалы. Так как проводник по условию задачи не заряжен, то

,

где q 1 и 1 заряд и потенциал шара. Когда шар и незаряженный проводник находятся на большом расстоянии друг от друга,

,

и электрическая энергия системы

.

В конечном состоянии системы, когда потенциал шара стал равным , электрическая энергия системы:

.

Работа внешних сил равна приращению электрической энергии:

= –0,0225 мкДж.

Заметим, что электрическое поле в конечном состоянии системы создается зарядами, индуцированными на проводнике, а также зарядами, неоднородно распределенными по поверхности металлического шара. Рассчитать это поле при известной геометрии проводника и заданном положении металлического шара весьма непросто. Нам не потребовалось этого делать, поскольку в задаче задана не геометрическая конфигурация системы, а потенциал шара в конечном состоянии.

Пример 7 .

Система состоит из двух концентрических тонких металлических оболочек с радиусами R 1 и R 2 (
и соответствующими зарядамиq 1 и q 2 . Найдите электрическую энергию W системы. Рассмотрите также специальный случай, когда
.

Решение .

Электрическая энергия системы из двух заряженных проводников определяется формулой

.

Для решения задачи необходимо найти потенциалы внутренней ( 1) и внешней ( 2) сфер. Это нетрудно сделать (см. соответствующий раздел пособия):

,
.

Подставляя эти выражения в формулу для энергии, получим

.

При
энергия равна

.

1. Энергия системы неподвижных точечных зарядов. Электростатические силы взаимодействия консервативны; следовательно, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов и , находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где и - соответственно потенциалы, создаваемые зарядом в точке нахождения заряда и зарядом в точке нахождения заряда . Согласно формуле (8.3.6),

Добавляя к системе из двух зарядов последовательно заряды , , …, можно убедиться в том, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна

где - потенциал, создаваемый в той точке, где находится заряд , всеми зарядами, кроме i-го.

2. Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны q, C, . Увеличим заряд этого проводника на dq. Для этого необходимо перенести заряд dq из бесконечности на уединенный проводник, затратив на это работу, равную

Чтобы зарядить тело от нулевого потенциала до , необходимо совершить работу

Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник:

Формулу (8.12.3.) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Полагая потенциал проводника равным , из (8.12.1.) найдем

где - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (8.12.3.) равна

где q - заряд конденсатора, C - его емкость, - разность потенциалов между обкладками.

4. Энергия электростатического поля. Преобразуем формулу (8.12.4.), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора и разности потенциалов между его обкладками (). Тогда получим



где V=Sd - объем конденсатора. Формула (8.12.5.) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е .

Формулы (8.12.4.) и (8.12.5.) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем - заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т.е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основное положение теории близкодействия о локализации энергии в поле и что носителем энергии является поле.

Объемная плотность энергии электростатического поля (энергия единицы объема)

Выражение (8.12.6.) справедливо только для изотропного диэлектрика, для которого выполняется соотношение: .

Пусть два заряда q 1 и q 2 находятся на расстоянии r друг от друга. Каждый из зарядов, находясь в поле другого заряда, обладает потенциальной энергией П. Используя П=qφ, определим

П 1 =W 1 =q 1 φ 12 П 2 =W 2 =q 2 φ 21

(φ 12 и φ 21 – соответственно потенциалы поля заряда q 2 в точке нахождения заряда q 1 и заряда q 1 в точке нахождения заряда q 2).

Согласно определению потенциала точечного заряда

Следовательно.

или

Таким образом,

Энергия электростатического поля системы точечных зарядов равна

(12.59)

(φ і - потенциал поля, создаваемого n -1 зарядами (за исключением q i) в точке, в которой находится заряд q i).

    Энергия уединённого заряженного проводника

Уединённый незаряженный проводник можно зарядить до потенциала φ, многократно перенося порции заряда dq из бесконечности на проводник. Элементарная работа, которая совершается против сил поля, в этом случае равна

Перенос заряда dq из бесконечности на проводник изменяет его потенциал на

(С – электроёмкость проводника).

Следовательно,

т.е. при переносе заряда dq из бесконечности на проводник увеличиваем потенциальную энергию поля на

dП = dW =δA= Cφdφ

Проинтегрировав данное выражение, находим потенциальную энергию электростатического поля заряженного проводника при увеличении его потенциала от 0 до φ:

(12.60)

Применяя соотношение
, получаем следующие выражения для потенциальной энергии:


(12.61)

(q - заряд проводника).

    Энергия заряженного конденсатора

Если имеется система двух заряженных проводников (конденсатор), то полная энергия системы равна сумме собственных потенциальных энергий проводников и энергии их взаимодействия:

(12.62)

(q - заряд конденсатора, С – его электроёмкость.

Сучётом того, что Δφ=φ 1 –φ 2 = U - разность потенциалов (напряжение) между обкладками), получим формулу

(12.63)

Формулы справедливы при любой форме обкладок конденсатора.

Физическая величину, численно равную отношению потенциальной энергии поля, заключённой в элементе объёма, к этому объёму, называют объёмной плотностью энергии.

Для однородного поля объёмная плотность энергии

(12.64)

Для плоского конденсатора, объём которого V=Sd , где S - площадь пластины, d - расстояние между пластинами,

Но
,
тогда

(12.65)

(12.66)

(Е – напряжённость электростатического поля в среде с диэлектрической проницаемостью ε, D = ε ε 0 E - электрическое смещение поля).

Следовательно, объёмная плотность энергии однородного электростатического поля определяется напряжённостью Е или смещением D.

Следует отметить, что выражение
и
справедливы только для изотропного диэлектрика, для которого выполняется соотношениеp= ε 0 χE.

Выражение
соответствует теории поля – теории близкодействия, согласно которой носителем энергии является поле.




Самое обсуждаемое
Почему горько на свадьбе Почему горько на свадьбе
Подставка для карандашей и ручек Подставка для карандашей и ручек
Лилия из одноразовых ложечек своими руками Лилия из ложек одноразовых Лилия из одноразовых ложечек своими руками Лилия из ложек одноразовых


top